

Safe and Sustainable Chemistry by Design WORLD4BUSINESS – July 4, 2023

Prof. Santiago Aparicio Department of Chemistry and ICCRAM University of Burgos - Spain

World Project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement nº 873005

Objectives:

• Develop predictive methods and in silico tools for developing <u>Safe by Design</u> materials and chemicals (pure and multicomponent):

How?

- Understanding physicochemical properties of complex materials and chemicals and their relationship(s) with toxicity, safety and sustainability.
- Infer most relevant material and chemical molecular level descriptors.
- Understand interaction with relevant biosystems (plasma membranes).
- Develop mathematical simple predictive methods (QSAR based and Artificial Intelligence approaches).

Adverse Outcome Pathway (AOP) concept

CASE STUDIES

- 1. Multicomponent nanomaterials (MCNMs). DIAGONAL HORIZON-2020 Project.
- 2. High Aspect Ratio Nanomaterials (single and multiwalled nanotubes). DIAGONAL HORIZON-2020 Project.
- 3. Deep Eutectic Solvents. DESforPFAS and NADESforNATURE projects.

Properties and toxicological effects of a MCNM?

Properties and toxicological effects of a HARN?

Length to diameter ratio on properties and interaction with biological targets

Model membranes

Nanomaterials exposure routes

- respiratory (lung model membranes)
- dermal (epidermal model membrane)
- digestive (intestine model membrane)

lipid	lung	intestine	e pide rmal
Phosphatidylcholine (lecithin)	50.3	44.9	46
Phosphatidylcholine (lecithin) eter			
Suma PC + PC eter (sólo Szlasa 2020)	50.3	44.9	46
Sphingomyelin	11.8	11.1	10.5
Phosphatidylcholine + Sphingomyelin	62.1	56	56.5
Phosphatidylethanolamine	18.5	25.1	28
Alkenyl phosphatidylethanolamine		5.4	
PE eter			
Suma (PE + PE eter OR PE + PE-P)	18.5	30.5	28
Lysophosphatidylcholine (lysolecithin)	2.1		trace
Lysobisphosphatidic acid	1.6		
Phosphatidylglycerol	2.6		2.1
Cardiolipin (diphosphatidylglycerol)	1.1		
Phosphatidylglycerol & cardiolipin	3.7		
Phosphatidylserine	7.4	7.4	6.8
Phosphatydilinositol		4.8	6.6
Phosphatidyl serine & phosphatidyl inositol	7.4	12.2	13.4
Diacylglycerol			
Others	1.2		
Ceramide		1.4	

MCNMs and HARNs under study

- Carbon based: Graphene, Graphene oxide, decorated Graphene.
- Metal oxide nanoparticles (Zn,Co, Pd,Rh) decorated and on ceramic surfaces (CeO₂,ZrO₂).
- Ti alloys with TiC nanoparticles.
- TiO₂ nanoparticles decorated with metallic atoms.
- Quantum dots: alloyed and core-shell structures
- Carbon nanotubes (single walled and multiwalled)
- Silver nanowires.

Interaction of nanomaterials with cell

membranas as a key MIE

model membranes in contact with a system formed by nanomaterials of

Carbon based nanomaterials and HARNs

Graphene nanoplatelets

Graphene oxide nanoplatelets

Fullerenes

Nanoparticle adsorbed and rolling on polar side of the membrane

Carbon nanotubes

Nanotubes adsorbed on outer side of the membrane Lower membrane disruption

WSRLD

Membrane composition effect

Parameters for membrane disruption quantification

System	FINAL	A _{POPC} / nm²	h / nm	- <s<sub>CD>_{sn-1}</s<sub>	-<\$ _{CD} > _{sn-2}	ω _ρ / nm	Θ _{PN} / deg	Θ _{sn-1} / deg	Θ _{sn-2} / deg
POPC-water	-	0.644±0.017	3.940±0.196	0.160±0.054	0.123±0.055	0.464±0.044	74.3±1.9	148.5±1.5	146.3±1.6
POPC-water-GRA-S	Р	0.615±0.008	4.218±0.216	0.201±0.059	0.170±0.064	0.422±0.030	74.2±0.8	154.8±0.5	154.0±0.7
POPC-water-GNR	А	0.601±0.009	4.176±0.158	0.197±0.060	0.148±0.077	0.391±0.031	75.1±0.8	153.6±0.5	151.0±1.4
POPC-water-GRA-T	А	0.603±0.010	4.179±0.017	0.197±0.059	0.147±0.071	0.421±0.036	75.0±0.9	154.0±0.8	151.2±1.1
POPC-water-GRA-P	А	0.603±0.008	4.180±0.181	0.195±0.056	0.144±0.061	0.492±0.034	74.8±0.7	154.1±0.9	151.4±0.7
POPC-water-GOX	А	0.646±0.009	3.948±0.153	0.163±0.057	0.163±0.061	0.446±0.037	75.4±0.8	148.8±0.6	145.0±1.0
POPC-water-SWNT_5_5	А	0.597±0.008	4.191±0.184	0.199±0.064	0.149±0.064	0.412±0.026	73.5±0.8	155.2±0.6	151.4±0.8
POPC-water-SWNT_10_10	А	0.606±0.008	4.123±0.156	0.181±0.057	0.145±0.058	0.437±0.042	74.3±0.9	151.5±0.7	151.5±0.7
POPC-water-SWNT_15_15	А	0.608±0.008	4.144±0.145	0.186±0.066	0.148±0.060	0.445±0.036	75.1±0.9	152.9±1.0	150.6±0.7
POPC-water-NC1	Р	0.651±0.009	4.000±0.191	0.172±0.058	0.128±0.060	0.484±0.037	74.0±1.0	149.9±0.8	149.5±0.7
POPC-water-NC2	А	0.640±0.010	4.001±0.180	0.165±0.060	0.134±0.058	0.460±0.050	74.0±1.2	148.8±0.7	146.5±0.6
POPC-water-NC3	Р	0.653±0.009	4.002±0.142	0.164±0.051	0.135±0.060	0.517±0.039	73.8±0.9	149.9±0.7	146.7±0.7
POPC-water-C60	А	0.614±0.008	4.131±0.153	0.189±0.060	0.140±0.059	0.456±0.037	74.0±1.1	152.5±0.7	150.7±0.6

Quantitative – structure – activity relationships & Machine learning (Artificial Intelligence)

Neural Networks

- Supported Vector Machines
- Decission trees

Response quantified as Adverse Outcomes (experimental toxicity data on model organisms)

The case of Deep Eutectic Solvents Coarse Grained Approach

COSMO-RS APPROACH FOR DEEP EUTECTIC SOLVENTS

- Combination of quantum chemistry + thermodynamics modelling
- Computationally fast and efficient
- Accurate for thermophysical properties, phase equilibria and environmental properties (octanol-water partition coefficients, permeability, interfacial properties...)

chemical / material – protein interaction strength

PROTEIN DOCKING AND INTERACTION

 $\langle 0 \rangle$

PREDICTION OF PROPERTIES: FUNCTIONALITY AND PERFORMANCE

https://www.diagonalproject.eu/

https://www.ubu.es/nanocomp-project

